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NONLINEAR WAVES IN A MAXWELLIAN MEDIUM 

A. I. Malkin and N. N. Myagkov UDC 534.2+539.374 

The study of propagation of nonstationary nonlinear waves in processes of explosive 
or shock deformation of metals involves substantial mathematical difficulties and requires, 
as a rule, a large expense in computer time. In many practical applications the waves gener- 
ated in the metal during explosion and shock can be assumed to be weak in the sense of small- 
ness of the relative variation of the material density in the wave [i]. Therefore it is 
of substantial interest to develop approximate methods of analyzing nonlinear waves, based 
on expanding the solutions in a small given parameter. 

To solve nonlinear wave problems in hydrodynamics and elasticity theory it is presently 
common to develop asymptotic multiple scale methods (MSM) [2-5], making it possible to find 
uniformly suitable approximations to the solution of the original complex system of equations 
on some large time interval. The necessity of accounting for strength effects in metals 
upon explosive deformation or shocks with moderate velocities requires the extension of MSM 
to more complicated systems of equations, describing, for example, the behavior of a Maxwel- 
lian medium [6], which is elastic for small strains, and flows for sufficiently large ones. 
However, the application of MSM to wave problems in such media is not a formal procedure. 
This is related to the stress dependence of the kinetic characteristics of the medium (for 
example, the relaxation time of tangential stresses) in the region of the elastoplastic transi- 
tion. The latter prevents direct expansion of elastoviscous terms, corresponding to the 
kinetics, in a series in the small parameter s (characterizing the relative variation of 
the material density in the wave) from the initial condition. 
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The purpose of the present study is to construct approximate equations for describing 
planar nonlinear deformation waves in an isotropic Maxwellian medium on the basis of multiple 
scale expansion techniques. Based on the suggested approach, the propagation problem is 
solved for a shock wave during contact explosion on the boundary of half-space. 

1. In nonlinear wave theory the MSM is used to factorize the complex original system 
of equations into a system of independent equations for the functions being the analogs of 
the ordinary Riemannian invariants, i.e., constant in the zeroth approximation along their 
characteristic directions [4, 5]. The basis of the method is the assumption of slow varia- 
tion of these functions, generated by the nonlinearity and by kinetic processes in the medium. 

The original one-dimensional equations of nonlinear elasticity theory [6, 7], describing 
the behavior of an isotropic elastoviscous Maxwellian medium in the principal axes, are written 
in the Lagrangian coordinate system: 

Op O. 0, OU- t OqO" 1 09~U ( 1 .  i )  
O"T + p - ~  = ot , p Oz ~h Oz~,. 
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where ei are the principal components of the tensor of effective elastic Almans deformations. 
The notations in (i.i) are the commonly adopted ones. The small parameter e << 1 of the 
initial condition characterizes the smallness of the relative variation of the material den- 
sity in the wave, while at the same time it is understood below that the deformations corre- 
spond to a stress 01 exceeding the elasticity limit (for metals this pressure varies from 
several to dozens of GPa). It is assumed that the system (i.i) is made dimensionless by 

2 the initial density Po , the choosing as scales the uniform compression modulus K = poc 0 , 
temperature To, and the characteristic length scale s of the initial condition. Then DI = 
(~ + 4/3~)/p0c0s P2 = <To/s 3, where ~ and q are the viscosity coefficients of exter- 
nal friction, K is the heat conduction coefficient, and the relaxation time of tangential 
stresses is T = c0~'/s 0 (~' is the dimensional value). 

It is assumed that Pm << 1 (m = i, 2) are small parameters. To apply the MSM technique 
to system (I.i) it is necessary to introduce, besides e and Bm, one more small parameter v = 
(cs 2 - c02)/2c02, where cs is the phase velocity of longitudinal elastic waves of infinitely 
small amplitude. The relation between the small parameters is e ~ Dm ~ v. 

The solution is sought in the form of an expansion in small parameters 

us = vei + eves + ~~ + ~mu1~ + . v v~ = . 

The necessi ty of accounting for the deformation k ine t ics  both in the e l a s t i c  and in the plas-  
t i c  region requires re tent ion of a subs tan t i a l ly  nonlinear shape of the dependence of the 
re laxat ion time of tangent ia l  s t r e ss  �9 on v i ,  which prevents d i rec t  expansion of the e las to-  
viscous terms ~ i  in a se r ies  in the small parameter e. Therefore we put ~ i = 7(e)~i (I)" 
(v c, v0) + . . . ,  where 7 << 1 is  a small parameter. Estimates show that  in the region of  
elastic deformations, where �9 = ~y >> i, 7 = O(e~ y-l) << e, while in the region of plastic 
deformations, where T = T u << i, ~ = e + O(eT,); therefore, one can put 7 ~ e. 

Substituting (1.2) into (i.i), we find the zeroth approximation system for v0i. The 
transition to the new unknown functions-invariants is related to diagonalization of this 
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system, i.e., the matrix A(~ t l (~  ). 

eigenvectors A ( ~ ) ; then Tj iAik (~163 = 

p'+ 
values. We introduce Vj = T~iv~ = 

pansion of Vj in small parameters, and 

We introduce the matrix Tji corresponding to the left 

%j6js163 = 6js where ~,2 = -+1 are the eigen- 

:), where p' = p - i; then from (1.2) follows the ex- 

we have for V0j 

OVoj OVoj 
at + ~J'-~-z = O. 

I t  i s  e a s i l y  seen t h a t  V0j are  c o n s t a n t  along t h e i r  c h a r a c t e r i s t i c  d i r e c t i o n  d x / d t  = ~j .  

In pass ing  to  the  fo l l owing  approximat ion  we assume, accord ing  to  [2] ,  t h a t  V0~ and 
V02 are  s lowly  va ry ing  f u n c t i o n s  of  t ime along t h e i r  c h a r a c t e r i s t i c  d i r e c t i o n s  V0j = 
V0j(~ j ,  t r  t~x ,  tBa,  t v ) ,  ~j = x - k j t ,  tr = r  t~m : ~mt, tv  = v t .  We then ob ta in  fo r  
the following expansion terms 

OV~] ) OVoj m,r aVol ~" lj  " OVoj 
at . - ~  + c~V~ ag~ ' at at~l 

1 o ~ . ~  aVo~ t o ~ (Vo~ + Vow) ' T ( ' "  ~)j ~ (vO1 - -  vo2)' 0Vlj : - -  - -  at at.2 + 2 n o~ 

] , m , l = l ,  2, a ~ = c o n s t ;  

o--'7-=-- at; + ( - t )  ~ + W - 3 ~ , ( V o ~ + V o 2 ) ,  

- -Z j~T~ : {(~i 1) (Vol -~- Vo2 , * )  -~- r (Vol -~- Vo2 , r  = 

t 
,* - T (v& + vo~ ) 

(v0~ + roy *) " 

(1 .3)  

(1.4) 

(1.5) 

Here e# = -(E 2 + E3). The kinetic equation for ~0 provides an implicit shape of a nonlinear 
operator, ;acting on (V01 + V02) in the last term of the right-hand side of (1.5). In (1.4) 

= (l~/qpQ)2 and it has also been taken into account that for adiabatic flow )~j OS' 
a s 

~s---I~ ~I/2 ~-f~2(V01 + g02 ) + O(sa+e~v), where ~ is the Lame coefficient, ~ is the temperature coeffi- 

cient of  exchange broaden ing ,  and q i s  the  hea t  c a p a c i t y  in the  absence of s t r e s s .  In w r i t -  

ing the first equation in (1.4) it was taken into account that for v--~O ei--- ~- 

_ 0 (~'r.) << ~-z. 

The time derivatives in the left-hand sides of (1.4), (1.5) are taken for fixed ~j, t~, 
tDm, and in the right-hand sides V0k($ j + (~j - ~k), t, te, t~1, t~2, tv), j ~ k. The choice 
of the dependence of V0i on te, t~m, tv IS necessary to remove~ secular terms, generated by 
integrating (1.4), (1.5] over time t. The procedure of removing secular terms in (1.4) is 
standard [2]; separating in the right-hand sides of (1.4) groups of terms which are inde- 
pendent of t, and equating them to zero, we obtain 

OV~j OV~ O; OVoj I O~Vo~ = 
ot~ .+ O~yo~ ~---~ = --  ot~ + T a~-'- T O; 

�9 OVoj t a 2 V o j =  

= ( ' l ) J  t4+7o2 , ppO,Oo), S=T. 2. 

(1.6) 

The result of integrating (1.5) is represented in the form 
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1 = ~ , 2 ,  ~ j .  

( 1 . 7 )  

Equating to zero the linear terms in t in the right-hand side of (1.7), we have 

. 0 ,  (v~ * (v0~) - ~ v0~ 
oVo~ot$ + ( -  1/+~ \0-~ - 3  (~176 ~162176 11 = O, -- ~ ~ = -- ~ (Vo~; , (v0~))'- (1.8) 

Equations (1.6), (1.8) guarantee the required dependence of the solutions V0j on the "slow" 
variables te, tDm, t~. For the suggested procedure to provide a uniformly valid approxima- 
tion to the solution of the exact equations (i.i) at long times, one can require finiteness 
of the integrals lj(~)(t) for t + ~. It is clear from the shape of the integrals lj(~) that 
this condition must be satisfied, at least for a sufficiently fast drop of the solution V 0 
with the tendency $j + • 

A more common condition, which must be satisfied by the integrals lj(V), so that the 
procedure considered makes sense, is 

[ I ~ ) [ = O ( l )  ( ]=1 ,2 )  (1 .9 )  

for t 50[min (E -l, ~m -I, v-l)]. The difference between the procedure suggested and the 
standard MSM consists in the presence of conditions (1.9), imposed on the kinetics of medium 
deformation. Conditions (1.9) do not guarantee global, uniform validity even with the in- 
clusion of corrections of order E 2, e~m, and ev, but at long, though confined, times they are 
sufficient for the solution of the equation to be close to the exact solution. 

We estimate the integrals ~-i = ~ -iH(_oi + oi,) (H is the Heaviside function). After 
some transformations we obtain an estimate, satisfying the sufficient condition (1.9): 

T V0kmax + W m j  = 0 (1), ] 4= k, ], k = 1, 2, 

where ~ t j  i s  t he  c h a r a c t e r i s t i c  t ime of  load ing  t he  j - t h  wave, and Atj : 1 in u n i t s  o f  s  

Equa t ions  ( 1 . 6 )  and t he  f i r s t  of  e q u a t i o n s  ( 1 . 8 )  a re  c o n v e n i e n t l y  r e p r e s e n t e d  in the  
form of  a s i n g l e  e q u a t i o n .  Taking i n to  accoun t  t h a t  V0j i s  not  e x p l i c i t l y  dependent  on the  

0 0 o o 
" f a s t "  t ime t ,  and fo r  f i x e d  ~ j ~ = e ~ - ~ 8 + ~ m 0 - ~  + v ~  we have from ( 1 . 6 )  and ( 1 . 8 )  

ov~ 4~e~V ~176 l ~176 ( ~176 - a o, (voj)~; (1. lO) 

~ (Voj) - T Voj 
ks = - �9 ( V o j . ,  (v0j)) ' i = ~, 2. ( 1 . 1 1 )  

Thus, t he  s o l u t i o n  of  the  sys tem of  the  two independent  e q u a t i o n s  ( 1 . 1 0 )  g i v e s  a u n i f o r m l y  
v a l i d  f i r s t  approx imat ion  to  the  s o l u t i o n  of  the  e x a c t  o r i g i n a l  sys tem of  e q u a t i o n s ,  a t  l e a s t  
at times t ~ O[min(e -I, ~m -l, ~-i)]. 

2. Consider the problem of a normal shock on the boundary of an isotropic half-space. 
From the uniformity of the initial state of the medium follows the vanishing of the function 
V02, corresponding to a negative eigenvalue 12, and the absence of tangential stresses elimi- 
nates shear waves. 

To study wave effects in half-space it is necessary to rewrite Eq. (i.i0) for V01 in 
terms of a boundary-value problem with the replacement of (t, x - llt) by (x, t - x/ll). 
The equation for V01 is represented in the form 

OVol 1 OVo~ 02Vol Oz 
au = T s V ~  - + ~  0--~- + w - ~ "  ( 2 . 1 )  
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Here $ = mt - y; y = mm~/p0c0; m = p0 x is the mass of the Lagrange coordinate; ~-i is the 
characteristic time from the boundary condition, ~V01 = h + u/c0; h = p/p0c02; p is the 

c 2 C ~ 
= l--,. ( 4 ) 2  ~ > 1 is a parameter hydrostatic pressure; g Pmax/p0c02; w = 2 '~,= $+ N ~/2P0C0; 

2~c o T 

from the equation of state; ~v~z = - S1/p0c02; S z is the component of the stress deviator, 
reduced to principal axes. Taking into account that in the given case sV02 = h - u/c 0 = 0 
accurately up to terms of order O(g 2 + Spm + ev), in (2.1) one can put sV01 = 2h. The kine- 
tic equation for z is 

~z ~ Oh 
~ = Z - ~  + ~ ( h ,  z) ( 2 . 2 )  

( ~ i s  t h e  r e l a x a t i o n  f u n c t i o n ) .  For  a M a x w e l l i a n  model  o f  an e l a s t o v i s c o u s  medium ~ = - z /  
�9 (h ,  z ) .  For  t h e  model  o f  an i d e a l  e l a s t o p l a s t i c  medium Eq. ( 2 . 2 )  i s  w r i t t e n  as  

1 oz Oh t Oz Oh TeN = --~tI(h~-- h), ~ m ;  T e N  = -~g(h --hm+2h~)~ ~>~m, ( 2 . 3 )  

where  H i s  t h e  H e a v i s i d e  f u n c t i o n ,  hm i s  t h e  maximum p r e s s u r e  in  t h e  wave p r o f i l e  ( i t  c o r r e -  
sponds  t o  t h e  c o o r d i n a t e  gm); hs  = -O~s /P0Cs  ~  i s  t h e  l i m i t i n g  e l a s t i c i t y  on t h e  H u g o n i o t  
a d i a b a t ,  and t h e  f i r s t  e q u a t i o n  c o r r e s p o n d s  t o  t h e  l o a d i n g  p r o c e s s  w h i l e  t h e  s e c o n d  c o r r e -  
sponds  t o  t h e  u n l o a d i n g  p r o c e s s .  I t  i s  e a s i l y  v e r i f i e d  t h a t  f o r  an e l a s t o v i s c o u s  medium 
w i t h  ~-1 = z - 1 H ( _ o l  + O l s )  ' on i m p o s i n g  t h e  c h o i c e  ~ ,  << 1 f rom ( 2 . 2 )  f o l l o w s  t h e  f i r s t  
e q u a t i o n  o f  ( 2 . 3 )  a c c u r a t e l y  up t o  t e r m s  o f  o r d e r  0 ( ~ ) .  

It is of interest to compare the results of numerical solution of the original equations 
of medium flow with the solutions of the approximate equation (2.1). We examine the problem 
of evolution of a compression wave in iron with a contact explosion layer (without account 
of phase transitions) on the basis of (2.1), (2.3), while the similar problem with numerical 
solution of the exact original system of flow equations of an ideal elastoplastic medium 
was considered in [8]. The equation of state E = (p - c02(p - p0))/(n - l)p leads to ~ = 
(n + 1)/2, with the original parameters for iron: n = 5.5, hs = 0.00571, and explosive layer 
thickness 50/50 1.68 cm. The small parameters of the problem are: s = pm'/p0c02 = 0.32 
(pm ~ is the pressure upon pressure decay at the contact boundary), v = 0.141, and the quantity 
Pl = 0.0032 was selected by'stability considerations of the numerical solution. The boundary 
condition h(0, t) corresponds to the analytic solution of the reflection problem of a detona- 
tion wave from a deformable wall [9]. 

The numerical solution of (2.1), (2.3) was carried out by the method of [I0], and the 
results are shown in Figs. 1 and 2. Figure 1 shows the distance dependence of the shock 
wave amplitude: curve i) for an elastoplastic medium; 2) the hydrodynamic approximation 
(v = 0); satisfactory agreement is observed with the results of numerical solution of the 
exact system of equations (points), obtained in [8]. The hydrodynamic approximation, as 
could be expected, provides an enhanced value of the pressure amplitude~ This is reflected 
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by the fact that despite the smallness of the elastic loading amplitude in comparison with 
the wave amplitude, it has a substantial effect on the wave profile (Fig. 2). Figure 2 also 
shows clearly the dynamics of formation and evolution of the elastic foreshock and load at 
the following distances from the boundaries ey = 0, 0.206, 0.488, 0.862, 1.33, 1.9, 2.55, 
and 3.3 (lines 1-8). 

The authors are grateful to E. I. Andriankin for supporting the study and for discussing 
the results. 
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Nonlinear 

ION AND NEUTRAL-PARTICLE KINETICS IN A LOW-PRESSURE DISCHARGE 

CONTAINING A CLOSED HALL CURRENT 

V. K. Kalashnikov and Yu. V. Sanochkin UDC 533.95 

Considerable interest attaches to heavy-particle kinetics in a real bounded system; 
there are various papers on the kinetics of neutral particles near the wall in a fusion reac- 
tor such as [I, 2]. One has to consider heavy-particle kinetics in relation to the boundary 
layer between a dense cold completely ionized plasma and a negative electrode [3]. As the 
distribution of the neutral particles near the bounding wall is spatially inhomogeneous in 
such cases, one has to consider the effects on the ion distribution and in particular on 
the ion transport in the gas from which the ions are derived. It is also important to con- 
sider heavy-particle conservation and dynamics for a low-pressure discharge containing a 
closed Hall current as used in generating accelerated-ion beams [4]. In that case, one can- 
not restrict consideration to a single component of the heavy particles. Studies have been 
made [5, 6] on the kinetics of neutral particles and ions in plasma accelerators with closed 
drift, but allowance was'made only for the ionization (the system of kinetic equations for 
the heavy components was integrated numerically). However, these studies have neglected 
the interactions between the ions and the neutral particles, which can be important under 
certain conditions [7]. 

The purpose of this study is to examine the kinetics of the heavy particles in a low- 
pressure discharge having closed drift for the magnetized electrons, with allowance for the 
burnout of the neutral component because of ionization by electron impact and collisions 
between ions and neutral particles. 
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